skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mahadevuni, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The autonomous navigation of mobile robots in unknown environments is of great interest in mobile robotics. This article discusses a new strategy to navigate to a known target location in an unknown environment using a combination of the “go-to-goal” approach and reinforcement learning with biologically realistic spiking neural networks. While the “goto-goal” approach itself might lead to a solution for most environments, the added neural reinforcement learning in this work results in a strategy that takes the robot from a starting position to a target location in a near shortest possible time. To achieve the goal, we propose a reinforcement learning approach based on spiking neural networks. The presented biologically motivated delayed reward mechanism using eligibility traces results in a greedy approach that leads the robot to the target in a close to shortest possible time. 
    more » « less